Control over phase behavior and solution structure of hairy-rod polyfluorene by means of side-chain length and branching

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051803. doi: 10.1103/PhysRevE.77.051803. Epub 2008 May 8.

Abstract

We present guidelines on how the solution structure of pi -conjugated hairy-rod polyfluorenes is controlled by the side-chain length and branching. First, the semiquantitative mean-field theory is formulated to predict the phase behavior of the system as a function of side-chain beads (N). The phase transition at N=N{ *} separates a lyotropic phase with solvent coexistence (N<N{ *}) and a metastable membrane phase (N>N{ *}). The membrane phase transforms into the isotropic phase of dissolved rodlike polymers at the temperature T_{mem}{ *}(N), which decreases both with N and with the degree of side-chain branching. This picture is complemented by polymer demixing with the transition temperature T_{IN}{ *}(N), which decreases with N . For N<N{ *}, the lyotropic phase turns isotropic with increasing T at T_{IN}{ *} . For N>N{ *}, stable membranes are predicted for T_{IN}{ *}<T<T_{mem}{ *} and metastable membranes with nematic coexistence for T<T_{IN}{ *}. Second, in experiment, samples of poly(9,9-dialkylfluorene) with N=6-10 were mixed in methylcyclohexane. For N=8 the side-chain branching was controlled by (9,9-dioctylfluorene)/(9,9-bis(2-ethylhexyl)fluorene) (F8/F2/6) random copolymers. The proportion of F8 to F2/6 repeat units was 100:0, 95:5, 90:10, 50:50, and 0:100. In accordance with the theory, lyotropic, membrane, and isotropic phases with the corresponding phase transitions were observed. For N<N{ *} approximately 6 only the lyotropic phase is present for attainable temperatures. The membrane and isotropic phases are present for N>N{ *}. T_{mem}{ *}(N) decreases from 340 K to 280 K for N > or = 8 . For copolymers, the membrane phase is found when the fraction of F8 units is at least 90%, T_{mem}{ *} decreasing with this fraction. The membrane phase contains three material types: loose sheets of two polymer layers, a better packed beta phase, and dissolved polymer. For N > or = 7 and T<T_{mem}{ *} the tendency for membrane formation becomes stronger with increasing temperature.