Effective thermostat induced by coarse graining of simple point charge water

J Chem Phys. 2008 Jul 14;129(2):024106. doi: 10.1063/1.2953320.

Abstract

We investigate how the transport properties of a united atom fluid with a dissipative particle dynamics thermostat depend on the functional form and magnitude of both the conservative and the stochastic interactions. We demonstrate how the thermostat strongly affects the hydrodynamics, especially diffusion, viscosity, and local escape times. As model system we use simple point charge (SPC) water, from which projected trajectories are used to determine the effective interactions in the united atom model. The simulation results support our argument that the thermostat should be viewed as an integral part of the coarse-grained dynamics rather than a tool for approaching thermal equilibrium. As our main result we show that the united atom model with the adjusted effective interactions approximately reproduces the diffusion constant and the viscosity of the underlying detailed SPC water model.