Presynaptic ryanodine receptor-CamKII signaling is required for activity-dependent capture of transiting vesicles

J Mol Neurosci. 2009 Feb;37(2):146-50. doi: 10.1007/s12031-008-9080-8. Epub 2008 Jul 1.

Abstract

Activity elicits capture of dense-core vesicles (DCVs) that transit through resting Drosophila synaptic boutons to produce a rebound in presynaptic neuropeptide content following release. The onset of capture overlaps with an increase in the mobility of DCVs already present in synaptic boutons. Vesicle mobilization requires Ca(2+)-induced Ca2+ release by presynaptic endoplasmic reticulum (ER) ryanodine receptors (RyRs) that in turn stimulates Ca2+/calmodulin-dependent kinase II (CamKII). Here we show that the same signaling is required for activity-dependent capture of transiting DCVs. Specifically, the CamKII inhibitor KN-93, but not its inactive analog KN-92, eliminated the rebound replacement of neuropeptidergic DCVs in synaptic boutons. Furthermore, pharmacologically or genetically inhibiting neuronal sarco-endoplasmic reticulum calcium ATPase to deplete presynaptic ER Ca2+ stores or directly inhibiting RyRs prevented the capture response. These results show that the presynaptic RyR-CamKII pathway, which triggers mobilization of resident synaptic DCVs to facilitate exocytosis, also mediates activity-dependent capture of transiting DCVs to replenish neuropeptide stores.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Calcium / metabolism
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / metabolism*
  • Drosophila melanogaster
  • Neuropeptides / metabolism
  • Receptors, Presynaptic / metabolism*
  • Ryanodine Receptor Calcium Release Channel / metabolism*
  • Synaptic Transmission / physiology*
  • Synaptic Vesicles / metabolism*

Substances

  • Neuropeptides
  • Receptors, Presynaptic
  • Ryanodine Receptor Calcium Release Channel
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium