Computer modeling of antibiotic fermentation with on-line product removal

Biotechnol Bioeng. 1988 Jul 20;32(3):356-62. doi: 10.1002/bit.260320314.

Abstract

The fermentation of Streptomyces griseus for the production of cycloheximide is similar to other antibiotic fermentations in that product synthesis is subject to feedback regulation and the desired product is degraded in the fermentation broth. The productivity of this fermentation can thus be dramatically increased by removing the antibiotic from the whole broth as it is produced. One means for effecting this on-line product removal is to contact the whole fermentation broth with neutral polymeric resin immobilized in hydrogel beads. The antibiotic adsorbs to the immobilized resin via hydrophobic interactions. In this work, the adsorption of the antibiotic onto the immobilized resin was characterized. A biochemical model of the fermentation was then used to describe the time profiles of biomass, substrate, and antibiotic in a fermentation system in which whole broth is circulated from the fermentor through a continuously stirred extractor containing the adsorbent beads. Various operating conditions were examined to optimize the productivity of the fermentation.