Predicting reactivities of organic molecules. Theoretical and experimental studies on the aminolysis of phenyl acetates

J Phys Chem A. 2008 Jul 24;112(29):6700-7. doi: 10.1021/jp8007514. Epub 2008 Jun 26.

Abstract

The quality of reactivity predictions coming from alternative theoretical approaches as well as experimental reactivity constants is examined in the case of the ester aminolysis process. The aminolysis of a series of para-substituted phenyl acetates is studied. The barrier heights for the rate-determining stage of the aminolysis of 16 phenyl acetate derivatives were predicted by employing density functional theory at the B3LYP/6-31+G(d,p) level. Experimental kinetic studies were carried out for the n-butylaminolysis of seven p-substituted phenyl acetates in acetonitrile. The results show that the electrostatic potential at the carbon atom of the carbonyl reaction center provides an excellent description of reactivities with regard to both theoretical barrier heights and experimental rate constants. The performance of other reactivity indices, Mulliken and NBO atomic charges, electrophilicity index, and Hammett constants, is also assessed.