Role of glucose in cloned mouse embryo development

Am J Physiol Endocrinol Metab. 2008 Oct;295(4):E798-809. doi: 10.1152/ajpendo.00683.2007. Epub 2008 Jun 24.

Abstract

Cloned mouse embryos display a marked preference for glucose-containing culture medium, with enhanced development to the blastocyst stage in glucose-containing medium attributable mainly to an early beneficial effect during the first cell cycle. This early beneficial effect of glucose is not displayed by parthenogenetic, fertilized, or tetraploid nuclear transfer control embryos, indicating that it is specific to diploid clones. Precocious localization of the glucose transporter SLC2A1 to the cell surface, as well as increased expression of glucose transporters and increased uptake of glucose at the one- and two-cell stages, is also seen in cloned embryos. To examine the role of glucose in early cloned embryo development, we examined glucose metabolism and associated metabolites, as well as mitochondrial ultrastructure, distribution, and number. Clones prepared with cumulus cell nuclei displayed significantly enhanced glucose metabolism at the two-cell stage relative to parthenogenetic controls. Despite the increase in metabolism, ATP content was reduced in clones relative to parthenotes and fertilized controls. Clones at both stages displayed elevated concentrations of glycogen compared with parthenogenetic controls. There was no difference in the number of mitochondria, but clone mitochondria displayed ultrastructural alterations. Interestingly, glucose availability positively affected mitochondrial structure and localization. We conclude that cloned embryos may be severely compromised in terms of ATP-dependent processes during the first two cell cycles and that glucose may exert its early beneficial effects via positive effects on the mitochondria.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Adenylate Kinase / metabolism
  • Animals
  • Cell Nucleus / drug effects
  • Cell Nucleus / physiology
  • Cloning, Organism
  • DNA, Mitochondrial / drug effects
  • DNA, Mitochondrial / metabolism
  • Embryonic Development / physiology*
  • Female
  • Fertilization in Vitro
  • Glucose / physiology*
  • Glycogen / metabolism
  • Glycogen Synthase / biosynthesis
  • Glycogen Synthase / genetics
  • Hybrid Cells
  • Mice
  • Microscopy, Electron, Transmission
  • Oocytes / drug effects
  • Parthenogenesis
  • Pregnancy

Substances

  • DNA, Mitochondrial
  • Adenosine Triphosphate
  • Glycogen
  • Glycogen Synthase
  • Adenylate Kinase
  • Glucose