Mitochondrial activity and forward scatter vary in necrotic, apoptotic and membrane-intact spermatozoan subpopulations

Reprod Fertil Dev. 2008;20(5):547-56. doi: 10.1071/rd08002.

Abstract

In the present study, we have related mitochondrial membrane potential (DeltaPsim) and forward scatter (FSC) to apoptotic-related changes in spermatozoa. Thawed red deer spermatozoa were incubated in synthetic oviductal fluid medium (37 degrees C, 5% CO2), with or without antioxidant (100 microm Trolox). At 0, 3, 6 and 9 h, aliquots were assessed for motility and were stained with a combination of Hoechst 33342, propidium ioide (PI), YO-PRO-1 and Mitotracker Deep Red for flow cytometry. The proportion of spermatozoa YO-PRO-1+ and PI+ (indicating a damaged plasmalemma; DEAD) increased, whereas that of YO-PRO-1- and PI- (INTACT) spermatozoa decreased. The proportion of YO-PRO-1+ and PI- spermatozoa (altered plasmalemma; APOPTOTIC) did not change. Both DEAD and APOPTOTIC spermatozoa had low DeltaPsim. Most high-DeltaPsim spermatozoa were INTACT, and their proportion decreased with time. The FSC signal also differed between different groups of spermatozoa, in the order APOPTOTIC > DEAD > INTACT/low DeltaPsim > INTACT/high DeltaPsim; however, the actual meaning of this difference is not clear. APOPTOTIC spermatozoa seemed motile at 0 h, but lost motility with time. Trolox only slightly improved the percentage of INTACT spermatozoa (P < 0.05). The population of APOPTOTIC spermatozoa in the present study may be dying cells, possibly with activated cell death pathways (loss of DeltaPsim). We propose that the sequence of spermatozoon death here would be: (1) loss of DeltaPsim; (2) membrane changes (YO-PRO-1+ and PI-); and (3) membrane damage (PI+). INTACT spermatozoa with low DeltaPsim or altered FSC may be compromised cells. The present study is the first that directly relates membrane integrity, apoptotic markers and mitochondrial status in spermatozoa. The results of the present study may help us understand the mechanisms leading to loss of spermatozoon viability after thawing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antioxidants / pharmacology
  • Apoptosis / drug effects
  • Apoptosis / physiology*
  • Cell Membrane / drug effects
  • Cell Membrane / physiology*
  • Cell Membrane Permeability / drug effects
  • Cell Membrane Permeability / physiology
  • Deer
  • Flow Cytometry
  • Luminescent Proteins / pharmacokinetics
  • Male
  • Membrane Potential, Mitochondrial / physiology
  • Mitochondria / physiology*
  • Necrosis
  • Red Fluorescent Protein
  • Sperm Count
  • Sperm Motility
  • Spermatozoa / drug effects
  • Spermatozoa / pathology*
  • Spermatozoa / physiology*

Substances

  • Antioxidants
  • Luminescent Proteins