Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling

Opt Express. 2008 Mar 31;16(7):4621-30. doi: 10.1364/oe.16.004621.

Abstract

Resonance-splitting and enhanced notch depth are experimentally demonstrated in micro-ring resonators on SOI platform as a result of the mutual mode coupling. This coupling can be generated either by the nanometer-scaled gratings along the ring sidewalls or by evanescent directional coupling between two concentric rings. The transmission spectra are fitted using the time-domain coupled mode analysis. Split-wavelength separation of 0.68 nm for the 5-microm-radius ring, notch depth of 40 dB for the 10-microm-radius ring, and intrinsic Q factor of 2.6 x 10(5) for the 20-microm-radius ring are demonstrated. Notch depth improvement larger than 25 dB has been reached in the 40-39-microm-radius double-ring structure. The enhanced notch depth and increased modal area for the concentric rings might be promising advantages for bio-sensing applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • Computer-Aided Design*
  • Equipment Design
  • Equipment Failure Analysis
  • Models, Theoretical*
  • Optics and Photonics / instrumentation*
  • Refractometry / instrumentation*
  • Refractometry / methods
  • Transducers*