Perturbative and non-perturbative aspects of optical filamentation in bulk dielectric media

Opt Express. 2008 Mar 3;16(5):2971-88. doi: 10.1364/oe.16.002971.

Abstract

The field of optical filament formation from initial ultrashort laser pulses in bulk dielectric media has now reached a high state of maturity, and has been studied in all three phases of matter, including long distance propagation in air, also termed light string propagation, water, and glass. From the earliest studies of light string propagation in air it was observed that conical emission, namely colored light emission off-axis from the filament, was a byproduct that accompanied the filamentation process. Since then several other byproducts accompanying optical filamentation have been studied, namely, white light or supercontinuum (SC) generation, third-harmonic (TH) generation, and X- and O-waves. Our goal in this paper is to review the theory and simulation of the byproducts accompanying optical filamentation, and to show that a unified approach is possible. Employing the angularly resolved spectrum, or K -Omega spectrum, a notion that has been used to great effect in the area of nonlinear conical waves, we demonstrate that a unified approach to the byproducts accompanying optical filamentation can be achieved using the twin notions of the Effective Three-Wave-Mixing (ETWM) picture of wave-mixing in the presence of filaments, which determines the locus of phase-matched wave generation in the angularly resolved spectrum, and the first-Born approximation to determine the profile of the angularly resolved spectrum. We summarize results of previous works and show that unlike the essentially non-perturbative core of the filament, several byproducts of filamentation can be treated as perturbative effects that have negligible feed-back effects on the filament itself. This should be of great utility for future studies of optimization of the yield of a given byproduct.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Computer Simulation
  • Light
  • Models, Theoretical*
  • Optics and Photonics*
  • Scattering, Radiation