Interleukin-1beta, but not interleukin-6, enhances renal and systemic endothelin production in vivo

Am J Physiol Renal Physiol. 2008 Aug;295(2):F446-53. doi: 10.1152/ajprenal.00095.2008. Epub 2008 Jun 4.

Abstract

The inflammatory cytokines IL-1beta and IL-6 have been shown to stimulate production of endothelin-1 (ET-1) by several cell types in vitro, but their effects on renal ET-1 production in vivo are not known. To test whether IL-1beta and IL-6 stimulate renal ET-1 production and release in vivo, urine was collected from male C57BL/6 mice over 24-h periods at baseline and on days 7 and 14 of a 14-day subcutaneous infusion of IL-1beta (10 ng/h), IL-6 (16 ng/h), or vehicle. By day 14, plasma ET-1 was significantly increased by IL-1beta infusion (1.7 +/- 0.1 vs. 0.8 +/- 0.1 pg/ml for vehicle, P < 0.001). Compared with vehicle infusion, IL-1beta infusion induced significant increases in urinary ET-1 excretion rate and urine flow but did not affect conscious mean arterial pressure (telemetry). IL-1beta infusion significantly increased renal cortical and medullary IL-1beta content (ELISA) and prepro-ET-1 mRNA expression (quantitative real-time PCR). In contrast, 14 days of IL-6 infusion had no significant effect on plasma ET-1 or urinary ET-1 excretion rate. To determine whether IL-1beta stimulates ET-1 release via activation of NF-kappaB, inner medullary collecting duct (IMCD-3) cells were incubated for 24 h with IL-1beta, and ET-1 release and NF-kappaB activation were measured (ELISA). IL-1beta activated NF-kappaB and increased ET-1 release in a concentration-dependent manner. The effect of IL-1beta on ET-1 release could be partially inhibited by pretreatment of IMCD-3 cells with an inhibitor of NF-kappaB activation (BAY 11-7082). These results indicate that IL-1beta stimulates renal and systemic ET-1 production in vivo, providing further evidence that ET-1 participates in inflammatory responses.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Dose-Response Relationship, Drug
  • Endothelin-1 / metabolism*
  • Interleukin-1beta / physiology*
  • Interleukin-6 / physiology*
  • Kidney Medulla / cytology
  • Kidney Medulla / drug effects
  • Kidney Medulla / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • NF-kappa B / antagonists & inhibitors
  • NF-kappa B / metabolism
  • Nitriles / pharmacology
  • Sulfones / pharmacology

Substances

  • 3-(4-methylphenylsulfonyl)-2-propenenitrile
  • Endothelin-1
  • Interleukin-1beta
  • Interleukin-6
  • NF-kappa B
  • Nitriles
  • Sulfones