Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers

Adv Drug Deliv Rev. 2008 Aug 17;60(11):1278-1288. doi: 10.1016/j.addr.2008.03.012. Epub 2008 Apr 10.

Abstract

In this review, we highlight the recent research developments of a series of surface-functionalized mesoporous silica nanoparticle (MSN) materials as efficient drug delivery carriers. The synthesis of this type of MSN materials is described along with the current methods for controlling the structural properties and chemical functionalization for biotechnological and biomedical applications. We summarized the advantages of using MSN for several drug delivery applications. The recent investigations of the biocompatibility of MSN in vitro are discussed. We also describe the exciting progress on using MSN to penetrate various cell membranes in animal and plant cells. The novel concept of gatekeeping is introduced and applied to the design of a variety of stimuli-responsive nanodevices. We envision that these MSN-based systems have a great potential for a variety of drug delivery applications, such as the site-specific delivery and intracellular controlled release of drugs, genes, and other therapeutic agents.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Biocompatible Materials / chemistry
  • Delayed-Action Preparations
  • Drug Carriers / chemistry
  • Drug Delivery Systems*
  • Humans
  • Nanoparticles / chemistry*
  • Porosity
  • Silicon Dioxide / chemistry*
  • Transfection / methods

Substances

  • Biocompatible Materials
  • Delayed-Action Preparations
  • Drug Carriers
  • Silicon Dioxide