Understanding the growth rates of polymer cocrystallization in the binary mixtures of different chain lengths

J Phys Chem B. 2008 Jun 26;112(25):7370-6. doi: 10.1021/jp800500g. Epub 2008 May 29.

Abstract

Polymer materials often contain a polydispersity of molecular lengths. We studied the linear growth rates of polymer lamellar crystals in the binary mixtures of different chain lengths by means of dynamic Monte Carlo simulations. Both chain lengths were chosen large enough to perform chain folding upon crystal growth but not very large to avoid the effect of chain entanglement in the bulk phase. We found that the crystal growth rates exhibit a linear dependence upon the compositions of mixtures. This linear relation implies that the overall crystal growth rates are integrated by the separate contributions of variable-length single polymers, supporting the model of intramolecular crystal nucleation. In each event of crystal growth of single polymers, long chains yield more crystallinity than short chains. This high efficiency explains higher crystal growth rates of long chains than that of short chains, and the explanation is quite different from the traditional view on the basis of their different melting points. In addition, with a partial release of sliding diffusion for crystal thickening, a new dependence of crystal growth rates occurs near the dilute end of long-chain compositions at high temperatures, which can be attributed to the preference of integer-number chain folding at the crystal growth front. The preferred fold lengths may vary with chain lengths and thus influence the crystal growth rates.