The past and present of sodium energetics: may the sodium-motive force be with you

Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):985-92. doi: 10.1016/j.bbabio.2008.04.028. Epub 2008 Apr 27.

Abstract

All living cells routinely expel Na(+) ions, maintaining lower concentration of Na(+) in the cytoplasm than in the surrounding milieu. In the vast majority of bacteria, as well as in mitochondria and chloroplasts, export of Na(+) occurs at the expense of the proton-motive force. Some bacteria, however, possess primary generators of the transmembrane electrochemical gradient of Na(+) (sodium-motive force). These primary Na(+) pumps have been traditionally seen as adaptations to high external pH or to high temperature. Subsequent studies revealed, however, the mechanisms for primary sodium pumping in a variety of non-extremophiles, such as marine bacteria and certain bacterial pathogens. Further, many alkaliphiles and hyperthermophiles were shown to rely on H(+), not Na(+), as the coupling ion. We review here the recent progress in understanding the role of sodium-motive force, including (i) the conclusion on evolutionary primacy of the sodium-motive force as energy intermediate, (ii) the mechanisms, evolutionary advantages and limitations of switching from Na(+) to H(+) as the coupling ion, and (iii) the possible reasons why certain pathogenic bacteria still rely on the sodium-motive force.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphatases / chemistry
  • Adenosine Triphosphatases / metabolism
  • Binding Sites
  • Biological Transport, Active
  • Energy Metabolism
  • Models, Molecular
  • Protein Conformation
  • Protein Subunits / chemistry
  • Protein Subunits / metabolism
  • Proton-Translocating ATPases / metabolism
  • Sodium / metabolism*
  • Vacuolar Proton-Translocating ATPases / chemistry
  • Vacuolar Proton-Translocating ATPases / metabolism

Substances

  • Protein Subunits
  • Sodium
  • Adenosine Triphosphatases
  • Vacuolar Proton-Translocating ATPases
  • Proton-Translocating ATPases