Microstructure and environment dependence of 2H11/2 --> 4I15/2 upconversion emission in YVO4:Er3+, Yb3+ nanocrystals

J Nanosci Nanotechnol. 2008 Mar;8(3):1437-42.

Abstract

Upconversion emission of different nanocrystalline YVO4:Er3+, Yb3+ synthesized by a hydrothermal process at low temperature was studied under 980 nm excitation where green [(2H11/2, 4S3/2) --> 4I15/2] and red (4F9/2 --> 4I15/2) emissions demonstrate sensitivity to the local environments of Er3+. Small particle size, high Yb3+ concentration, or high temperature favors the emission of the 2H11/2 --> 4I15/2 transition. Both XRD patterns and Raman spectra have confirmed that crystal lattice distortion of YVO4:Er3+, Yb3+ nanocrystals is more serious when the nanoparticle size is decreasing or Yb3+ concentration is increasing. This distortion is thought to play a key role in the observed spectral properties, which might lead to a new route to improve the monochromatic upconversion emission efficiency in these nanocrystals.

Publication types

  • Research Support, Non-U.S. Gov't