Novel molecular precursor of lanthanide complexes with long chain mono cis-butene dicarboxylate to the controlled synthesis of Y2O3:Eu3+ phosphors

J Nanosci Nanotechnol. 2008 Mar;8(3):1191-8.

Abstract

Maleic anhydride was modified with long chain alcohols (1-hexadecanol, 1-octadecanol, 1-eicosanol and docosyl) to their corresponding amphiphilic mono-L cis-butene dicarboxylates (L = hexadecyl, octadecyl, eicosyl and docosyl). Subsequently, corresponding amphiphilic lanthanide (Y3+, Eu3+) complexes with these four mono-L cis-butene dicarboxylate ligands [Ln(L')3, Ln = Eu, Y; L' = MAH, MAO, MAE, MAD] were synthesized. Then, under heating at various temperatures (700, 800, 900, 1000, and 1,100 degrees C), twenty kinds of nanosized Y2O3:Eu3+ phosphors were prepared using these four as-derived amphiphilic lanthanide (Y3+, Eu3+) complexes as precursors. All four complexes can form nanosized micelle-like aggregates by special self-assembly. Results show that, under heating at 1,000 degrees C, the four Y2O3:Eu3+ phosphors present more regular dispersion particle-like morphology, and the particle size is in the range of 30-80 nm. They exhibit an especially strong emission at 609 nm, and the luminescence intensity of the sample derived from MAD at 1,000 degrees C is best.

Publication types

  • Research Support, Non-U.S. Gov't