A variable gene in a conserved region of the Helicobacter pylori genome: isotopic gene replacement or rapid evolution?

DNA Res. 2008 Jun 30;15(3):163-8. doi: 10.1093/dnares/dsn006. Epub 2008 Apr 27.

Abstract

The present study concerns the identification of a novel coding sequence in a region of the Helicobacter pylori genome, located between JHP1069/HP1141 and JHP1071/HP1143 according to the numbering of the J99 and 26,695 reference strains, respectively, and spanning three different coding DNA sequences (CDSs). The CDSs located at the centre of this locus were highly polymorphic, as determined by the analysis of 24 European isolates, 3 Asian, and 3 African isolates. Phylogenetic and molecular evolutionary analyses showed that the CDSs were not restricted to the geographical origin of the strains. Despite a very high variability observed in the deduced protein sequences, significant similarity was observed, always with the same protein families, i.e. ATPase and bacteriophage receptor/invasion proteins. Although this variability could be explained by isotopic gene replacement via horizontal transfer of a gene with the same function but coming from a variety of sources, it seems more likely that the very high sequence variation observed at this locus is the result of a strong selection pressure exerted on the corresponding gene product. The CDSs identified in the present study could be used as strain specific markers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Chromosome Mapping
  • Conserved Sequence*
  • Evolution, Molecular*
  • Gene Transfer, Horizontal / physiology*
  • Genetic Variation*
  • Genome, Bacterial
  • Helicobacter pylori / genetics*
  • Phylogeny
  • Time Factors