Further investigation of the photodissociation dynamics of dichlorocarbene near 248 nm

J Chem Phys. 2008 Apr 21;128(15):154322. doi: 10.1063/1.2908236.

Abstract

A further investigation of the 248 nm photodissociation of CCl(2), which expands upon our original study of this process [S. K. Shin and P. J. Dagdigian, Phys. Chem. Chem. Phys. 8, 3446 (2006)], is presented. The CCl(2) parent molecule and the CCl photofragment were detected by laser fluorescence excitation in a molecular beam experiment. From the dependence of the CCl(2) signals on the photolysis laser fluence, attenuation cross sections of the 0(0), 1(1), and 2(1) vibrational levels were determined; the cross sections for the excited vibrational levels were found to be significantly smaller than those for the ground vibrational level. The previously observed fragment CCl bimodal rotational state distribution was found to arise from the photolysis of more than one parent molecule. At low CHCl(3) mole fractions in the gas supplied to the pyrolysis beam source, it was concluded that CCl(2) is the photolysis precursor for both low-J and high-J CCl fragments. On the basis of the dependence of the CCl signals on the photolysis laser fluence, ground and vibrationally excited CCl(2), respectively, were assigned as the precursors to these two classes of fragments. The photofragment excitation spectra for low-J and high-J CCl fragments from the photolysis of CCl(2) were recorded in the wavelength range around 248 nm; both were found to be structureless. The 248 nm photodissociation dynamics of CCl(2) is discussed in light of our experimental observations and quantum chemical calculations of the CCl(2) excited electronic states.