Topological and electron-transfer properties of the 2-thiobarbituric Acid adlayer on polycrystalline gold electrodes

Langmuir. 2008 May 6;24(9):5146-54. doi: 10.1021/la7038812. Epub 2008 Apr 1.

Abstract

The voltammetric behavior of [Ru(NH(3))(6)](3+) on bare gold and that on 2-thiobarbituric acid (TBA)-modified gold surfaces are almost identical, with formal rate constants for the electron-transfer process of 0.25 and 0.21 cm s(-1), respectively. A detailed analysis of the modified surface allowed us to establish that this behavior is due to (i) a high surface coverage of 0.67, (ii) a low adsorption resistance that minimizes the potential drop across the TBA monolayer, (iii) the enhanced hydrophilic character of the modified surface compared with that of bare gold, and (iv) a low decay constant for the electronic coupling of the TBA adlayer that minimizes the tunneling barrier for the electron transfer. The electron-transfer process from Au and Au|TBA electrodes to the soluble [Ru(NH(3))(6)](3+/2+) redox couple can be explained according to the multistate model under the Landau-Zener formalism in the nonadiabatic regime that was recently proposed (Feldberg, S. W.; Sutin, N. Chem. Phys. 2006, 324, 216-225). The behavior of soluble [Ru(NH(3))(6)](3+) changes from semi-infinite linear diffusion on Au to finite-length bounded on Au|TBA, in agreement with a surface dimension of 2.17 for the TBA adlayer with a bidimensional underlying gold surface. This value for the surface dimension was determined by two essentially different electrochemical techniques with different sensing capabilities: cyclic voltammetry and electrochemical impedance spectroscopy. The estimated dielectric constant of the adlayer (around 37) and the low potential drop across the monolayer suggest the formation of a "mirror" pattern of water molecules in the diffusion layer, which explains this result.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallization
  • Electrodes
  • Electrons*
  • Gold / chemistry*
  • Molecular Structure
  • Surface Properties
  • Thiobarbiturates / chemistry*

Substances

  • Thiobarbiturates
  • Gold
  • thiobarbituric acid