Predicting tree diversity across the United States as a function of modeled gross primary production

Ecol Appl. 2008 Jan;18(1):93-103. doi: 10.1890/07-0693.1.

Abstract

At the regional and continental scale, ecologists have theorized that spatial variation in biodiversity can be interpreted as a response to differences in climate. To test this theory we assumed that ecological constraints associated with current climatic conditions (2000-2004) might best be correlated with tree richness if expressed through satellite-derived measures of gross primary production (GPP), rather than the more commonly used, but less consistently derived, net primary production. To evaluate current patterns in tree diversity across the contiguous United States we acquired information on tree composition from the USDA Forest Service's Forest Inventory and Analysis program that represented more than 17,4000 survey plots. We selected 2693 cells of 1000 km2 within which a sufficient number of plots were available to estimate tree richness per hectare. Our estimates of forest productivity varied from simple vegetation indices indicative of the fraction of light intercepted by canopies at 16-d intervals, a product from the MODIS (Moderate Resolution Imaging Spectro-radiometer), to 8- and 10-d GPP products derived with minimal climatic data (MODIS) and SPOT-Vegetation (Systeme Pour l'Observation de la Terre), to 3-PGS (Physiological Principles Predicting Growth with Satellites), which requires both climate and soil data. Across the contiguous United States, modeled predictions of gross productivity accounted for between 51% and 77% of the recorded spatial variation in tree diversity, which ranged from 2 to 67 species per hectare. When the analyses were concentrated within nine broadly defined ecoregions, predictive relations largely disappeared. Only 3-PGS predictions fit a theorized unimodal function by being able to distinguish highly productive forests in the Pacific Northwest that support lower than expected tree diversity. Other models predicted a continuous steep rise in tree diversity with increasing productivity, and did so with generally better or nearly equal precision with fewer data requirements.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Species Specificity
  • Trees / classification*
  • United States