Effect of the heterointerface on transport properties of in situ formed MgO/titanate heterostructured nanowires

J Am Chem Soc. 2008 Apr 16;130(15):5378-82. doi: 10.1021/ja800367a. Epub 2008 Mar 22.

Abstract

Heterostructured transition metal oxide nanowires are potential candidates to incorporate rich functionalities into nanowire-based devices. Although the oxide heterointerface plays a crucial role in determining the physical properties, the effects of the heterointerface on the oxide nanowire's properties have not been clarified. Here we investigate for the first time the significant role of the heterointerface in determining the transport properties of well-defined MgO/titanate heterostructured nanowires by combining a technique for in situ formation of a oxide heterointerface and microwave conductivity measurement. Variation of the heterointerface strongly affects the nanowire's transport properties due to the crystallinity and the atomic interdiffusion at the oxide heterointerface. Thus, the precise in situ formation of a well-defined heterointerface is crucial to create oxide heterostructured nanowires with the desired transport properties.