Dispersion effects in elliptical-core highly birefringent fibers

Appl Opt. 2001 Apr 20;40(12):1911-20. doi: 10.1364/ao.40.001911.

Abstract

Modal birefringence and its sensitivity to temperature and hydrostatic pressure were measured versus wavelength in three elliptical-core fibers and one fiber with stress-induced birefringence. We carried out the measurements in the spectral range from 633 to 843 nm by using interferometric methods. In fibers with elliptical cores all the measured parameters showed high chromatic dependence, whereas in fibers with stress-induced birefringence this dependence was weak. We modeled the dispersion characteristics of two elliptical-core fibers by using the modified perturbation approach first proposed by Kumar. The modification consists of introducing into the expression for the normalized propagation constants an additional perturbation term that contains information about stress-induced birefringence. The results of modeling show that the temperature and pressure sensitivity of elliptical-core fiber are associated primarily with variations in stress induced by these parameters. The agreement between measured and calculated values of sensitivity in the worst case was equal to 20% for modal birefringence and temperature sensitivity and 50% for pressure sensitivity. Lower agreement between measured and calculated values of pressure sensitivity is most probably associated with uncertainties in the material constants used in modeling.