Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers

Environ Sci Technol. 2008 Feb 15;42(4):1251-5. doi: 10.1021/es0720199.

Abstract

Even though activated carbon fiber (ACF) filters have been widely used in air cleaning for the removal of hazardous gaseous pollutants, because of their extended surface area and high adsorption capacity, bacteria may breed on the ACF filters as a result of their good biocompatibility; ACF filters can themselves become a source of bioaerosols. In this study, silver particles were coated onto an ACF filter, using an electroless deposition method and their efficacy for bioaerosol removal was tested. First, various surface analyses, including scanning electron microscopy, inductively coupled plasma and X-ray diffraction were carried out to characterize the prepared ACF filters. Filtration and antimicrobial tests were then performed on the filters. The results showed that the silver-deposited ACF filters were effective for the removal of bioaerosols by inhibition of the survival of microorganisms, whereas pristine ACF filters were not. Two bacteria, Bacillus subtilis and Escherichia coli, were completely inhibited within 10 and 60 min, respectively. Electroless silver deposition did not influence the physical characteristics of ACF filters such as pressure drop and filtration efficiency. The gas adsorptive ability of the silver-deposited ACF filter, as represented by the micropore specific surface area, decreased by about 20% compared to the pristine filter because of the blockage of the ACF micropores by silver particles. Therefore, the amount of silver particles on the ACF filters needs to be optimized to avoid excessive reduction of their adsorptive characteristics and to show effective antimicrobial activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Bacillus subtilis / drug effects*
  • Carbon*
  • Escherichia coli / drug effects*
  • Microscopy, Electron, Scanning
  • Silver / pharmacology*

Substances

  • Anti-Bacterial Agents
  • Silver
  • Carbon