Frequency-modulation spectroscopy with blue diode lasers

Appl Opt. 2000 Jul 20;39(21):3774-80. doi: 10.1364/ao.39.003774.

Abstract

Frequency-modulation spectroscopy provides ultrasensitive absorption measurements. The technique is especially adaptable to diode lasers, which can be modulated easily, and has been used extensively in the near-infrared and infrared spectral regions. The availability of blue diode lasers now means that the accessible wavelength region can be increased. We successfully demonstrate wavelength-modulation spectroscopy and two-tone frequency-modulation spectroscopy for the weak second resonance line of potassium at 404.8 nm and for the transition at 405.8 nm in lead, starting from the thermally populated 6(p)(2 3)P(2) metastable level. Information on the modulation parameters is obtained with a fitting procedure. Experimental signal-to-noise ratios at different absorption levels are compared with theoretical signal-to-noise ratios and show good agreement. Detection sensitivities of 2 x 10(-6) and 5 x 10(-6) for wavelength and two-tone frequency-modulation spectroscopy, respectively, for a 120-Hz bandwidth are demonstrated.