Tin-oxo clusters based on aryl arsonate anions

Chemistry. 2008;14(13):4093-103. doi: 10.1002/chem.200701498.

Abstract

Reactions of Ph(3)SnOH or Ph3SnCl with aryl arsonic acids RAsO3H2, where R=C6H5 (1), 2-NH2C6H4 (2), 4-NH2C6H4 (3), 2-NO2C6H4 (4), 3-NO2C6H4 (5), 4-NO2C6H4 (6), 3-NO2-4-OHC6H3 (7), 2-ClC6H4 (8) and 2,4-Cl2C6H3 (9), gave 18 Sn-O cluster compounds. These compounds can be classified into four types: type A: [{(PhSn)3(RAsO3)3(mu3-O)(OH)(R'O)2}2Sn] (R=C6H5, 2-NH2C6H4, 4-NH2C6H4, 2-NO2C6H4, 3-NO2C6H4, 2-ClC6H4, 2,4-Cl2C6H3, and 3-NO2-4-OHC6H3; R'=Me or Et); type B: [{(PhSn)3(RAsO3)(2)(RAsO3H)(mu3-O)(R'O)2}2] (R=4-NO2C6H4, R'=Me); type C: [{(PhSn)3(RAsO3)3(mu3-O)(R'O)3}2Sn] (R=2,4-Cl2C6H3, R'=Me); type D: [{Sn3Cl3(mu3-O)(R'O)3}(2)(RAsO3)4] (R=2-NO2C6H4 and 4-NO2-C6H4; R'=Me or Et). Structures of types A and B contain [Sn3(mu3-O)(mu2-OR')2] building blocks, while in types C and D the stannoxane cores are built from two [Sn3(mu3-O)(mu2-OR')3] building blocks. The reactions proceeded with partial or complete dearylation of the triphenyltin precursor. These various structural forms are realized by subtle changes in the nature of the organotin precursors and aryl arsonic acids. The syntheses, structures, and structural interrelationship of these organostannoxanes are discussed.