Super-resolution imaging by random adsorbed molecule probes

Nano Lett. 2008 Apr;8(4):1159-62. doi: 10.1021/nl0733280. Epub 2008 Mar 6.

Abstract

Single molecule localization (SML) is a powerful tool to measure the position and trajectory of molecules in numerous systems, with nanometer accuracy. This technique has been recently utilized to overcome the diffraction limit in optical imaging. So far, super-resolution imaging by SML was demonstrated using photoactivable or photoswitchable fluorophores, as well as diffusive fluorophore probes in solution. All these methods, however, rely on special fluorophore or object properties. In this Letter, we propose and demonstrate a new super-resolution technique attainable for a bio/dielectric structure on a metal substrate. A sub-diffraction-limited image is obtained by randomly adsorbed fluorescent probe molecules on a liquid-solid interface, while the metal substrate, quenching the unwanted fluorescent signal, provides a significantly enhanced imaging contrast. As this approach does not use specific stain techniques, it can be readily applied to general dielectric objects, such as nanopatterned photoresist, inorganic nanowires, subcellular structures, etc.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adsorption
  • Fourier Analysis
  • Molecular Probes*

Substances

  • Molecular Probes