Synthesis and photophysical properties of ruthenium-based dendrimers and their use in dye sensitized solar cells

Inorg Chem. 2008 Apr 21;47(8):3408-14. doi: 10.1021/ic702432u. Epub 2008 Mar 6.

Abstract

First- and second-generation dendrimers (Ru3 and Ru6) have been synthesized, and their photophysical properties were investigated in solution and when adsorbed on the nanocrystalline TiO2 surface. The performance of Ru3 and Ru6 as charge transfer photosensitizers in nanocrytalline TiO2 based solar cells was also investigated. The best photovoltaic performance was obtained by the Ru3 based solar cell yielding a short circuit current of J sc = 5.52 mA.cm (-2) and an open circuit voltage of V oc = 626 mV, corresponding to an overall conversion efficiency of eta = 1.80% that is approximately double the conversion efficiency of the reference compound Ru1 (eta = 0.91%) and of the second generation dendrimer Ru6 (eta = 0.95%). The particular efficiency of the first generation dendrimer, Ru3, is attributed to the better light-harvesting properties of the doped nanocrystalline TiO2 film when compared to Ru1, whereas the poor performance of the second generation dendrimer, Ru6, is attributed to the uneven adsorption of all of the ruthenium moieties to the nanocrystalline TiO2 surface at the same time.