The effect of hydrodynamic interactions on the dynamics of DNA translocation through pores

J Chem Phys. 2008 Feb 28;128(8):085102. doi: 10.1063/1.2831777.

Abstract

In this work, we investigate the effect of hydrodynamic interactions on the dynamics of DNA translocation through micropores. We simulate DNA as a bead-spring chain and use a lattice Boltzmann method to simulate the flow field that arises from the motion of the molecule. We investigate the free-draining entrance of DNA to the pore by diffusion and find that, consistent with experiments, molecules have a higher probability of entering the pore from one end. We then consider the electric-field driven translocation of 21-210 microm DNA with and without hydrodynamic interactions. Consistent with experiments, we study translocation events that are much shorter than the relaxation time of DNA. We find that the effect of hydrodynamic interactions on this process is to cause different regions of a molecule, other than the ones pulled by voltage or chain connectivity into the pore, to move toward the pore. We quantify this effect and show that it is smaller than the difference in the translocation dynamics of chains that arises from different initial configurations of the molecules. A power-law scaling of translocation time with chain length is observed, with exponents of 1.28+/-0.03 and 1.31+/-0.03 in simulations with and without hydrodynamic interactions, respectively. Our results are in good agreement with recent translocation experiments conducted in small pores and show that, for the regime considered in this work, hydrodynamic interactions play a minor role in the relation of the translocation time to chain length. For fast translocation processes, the effect of hydrodynamic interactions is local and the main factor determining the dynamics of DNA is the initial configuration of the molecules.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biological Transport
  • DNA / chemistry*
  • DNA / metabolism*
  • Diffusion
  • Hydrostatic Pressure
  • Models, Biological*
  • Models, Chemical*
  • Motion
  • Nucleic Acid Conformation
  • Porosity
  • Rheology
  • Static Electricity

Substances

  • DNA