Parasitism of the soybean aphid, Aphis glycines by Binodoxys communis: the role of aphid defensive behaviour and parasitoid reproductive performance

Bull Entomol Res. 2008 Aug;98(4):361-70. doi: 10.1017/S000748530800566X. Epub 2008 Feb 25.

Abstract

The Asian parasitoid, Binodoxys communis (Gahan) (Hymenoptera: Braconidae), is a candidate for release against the exotic soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in North America. In this study, we examined preferences by B. communis for the different developmental stages of A. glycines and investigated consequences of these preferences for parasitoid fitness. We also determined to what extent aphid defensive behaviours mediate such preferences. We found that B. communis readily attacks and successfully develops in the different A. glycines developmental stages. Binodoxys communis development time gradually increased with aphid developmental stage, and wasps took longest to develop in alates. An average (+/-SE) of 54.01+/-0.08% of parasitized A. glycines alatoid nymphs transformed into winged adult aphids prior to mummification. No-choice assays showed a higher proportion of successful attacks for immature apterous A. glycines nymphs compared to adults and alatoid nymphs. Also, choice trials indicated avoidance and lower attack and oviposition of adults and alatoid nymphs. The different aphid stages exhibited a range of defensive behaviours, including body raising, kicking and body rotation. These defenses were employed most effectively by larger aphids. We discuss implications for the potential establishment, spread and biological control efficacy of A. glycines by B. communis in the event that it is released in North America.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aphids / growth & development
  • Aphids / physiology*
  • Behavior, Animal
  • Choice Behavior
  • Female
  • Glycine max / parasitology*
  • Host-Parasite Interactions
  • Male
  • Plant Diseases / parasitology
  • Reproduction
  • Sex Ratio
  • Wasps / pathogenicity
  • Wasps / physiology*