The reaction pathways for HSCH3 adsorption on Au(111): a density functional theory study

Langmuir. 2008 Apr 1;24(7):3274-9. doi: 10.1021/la703306t. Epub 2008 Feb 23.

Abstract

Density functional theory was used to investigate the reaction pathways for HSCH(3) adsorption on Au(111) at low coverage. A molecular adsorbed state was found with the S atom bond on Top sites (E approximately -0.38 eV) and molecular adsorption is nonactivated. The H-SCH(3) dissociation process is energetically less favorable and becomes slightly exothermic only when surface relaxation is considered (DeltaE approximately -0.2 eV). All the reaction pathways present a sizable activation energy barrier, with the lowest being approximately 0.52 eV (0.41 eV taking into account slab relaxation). In the corresponding saddle point of the potential energy surface, the S atom of the methylthiolate molecule is placed on Top sites and the H near a Bridge site. The high barrier obtained explains the complete absence of reactive methanethiol dissociation found in recent experiments.