Photometric immersion refractometry: a method for determining the refractive index of marine microbial particles from beam attenuation

Appl Opt. 1997 Jun 20;36(18):4214-25. doi: 10.1364/ao.36.004214.

Abstract

Photometric immersion refractometry is a technique for determining the refractive index of particulate material. In this technique, the attenuation of light by a suspension of particles is measured as a function of the refractive index of the immersion medium. A minimum attenuation occurs at the refractive index of the medium equal to that of the particles. This technique can serve as a benchmark method for the refractive index determination because it is independent of assumptions invoked by other techniques, such as those based on the inversion of the spectral attenuation data. We present a rigorous model of the photometric immersion refractometry based on the anomalous diffraction approximation for the attenuation efficiency of particles. This model permits one to determine the average value of the real part of the refractive index of the particles, its variance, and the average imaginary part of the refractive index of the particles. In addition, the fourth moment of the particle size distribution can be determined if the concentration and shape of the particles are known. We analyze the sensitivity of this model to experimental errors and discuss the applicability of photometric immersion refractometry to marine microbial particles. We also present experimental results of this technique as applied to heterotrophic marine bacteria. The results indicate that the refractive index of these bacteria was narrowly distributed about the average value of 1.3886.