TRPC6 contributes to the Ca(2+) leak of human erythrocytes

Cell Physiol Biochem. 2008;21(1-3):183-92. doi: 10.1159/000113760. Epub 2008 Jan 16.

Abstract

Human erythrocytes express cation channels which contribute to the background leak of Ca(2+), Na(+) and K(+). Excessive activation of these channels upon energy depletion, osmotic shock, Cl(-) depletion, or oxidative stress triggers suicidal death of erythrocytes (eryptosis), characterized by cell-shrinkage and exposure of phosphatidylserine at the cell surface. Eryptotic cells are supposed to be cleared from circulating blood. The present study aimed to identify the cation channels. RT-PCR revealed mRNA encoding the non-selective cation channel TRPC6 in erythroid progenitor cells. Western blotting indicated expression of TRPC6 protein in erythrocytes from man and wildtype mice but not from TRPC6(-/-) mice. According to flow-cytometry, Ca(2+) entry into human ghosts prepared by hemolysis in EGTA-buffered solution containing the Ca(2+) indicator Fluo3/AM was inhibited by the reducing agent dithiothreitol and the erythrocyte cation channel blockers ethylisopropylamiloride and amiloride. Loading of the ghosts with antibodies against TRPC6 or TRPC3/6/7 but neither with antibodies against TRPM2 or TRPC3 nor antibodies pre-adsorbed with the immunizing peptides inhibited ghost Ca(2+) entry. Moreover, free Ca(2+) concentration, cell-shrinkage, and phospholipid scrambling were significantly lower in Cl(-)-depleted TRPC6(-/-) erythrocytes than in wildtype mouse erythrocytes. In conclusion, human and mouse erythrocytes express TRPC6 cation channels which participate in cation leak and Ca(2+)-induced suicidal death.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Cytosol
  • Erythrocytes / cytology
  • Erythrocytes / metabolism*
  • Erythroid Precursor Cells / cytology
  • Erythroid Precursor Cells / metabolism
  • Humans
  • Ion Channel Gating
  • Mice
  • TRPC Cation Channels / metabolism*
  • TRPC6 Cation Channel

Substances

  • TRPC Cation Channels
  • TRPC6 Cation Channel
  • TRPC6 protein, human
  • Trpc6 protein, mouse
  • Calcium