Versatile pathways for in situ polyolefin functionalization with heteroatoms: catalytic chain transfer

Angew Chem Int Ed Engl. 2008;47(11):2006-25. doi: 10.1002/anie.200703310.

Abstract

Chain-transfer processes represent highly effective chemical means to achieve selective, in situ d- and f-block-metal catalyzed functionalization of polyolefins. A diverse variety of electron-poor and electron-rich chain-transfer agents, including silanes, boranes, alanes, phosphines, and amines, effect efficient chain termination with concomitant carbon-heteroelement bond formation during single-site olefin-polymerization processes. High polymerization activities, control of polyolefin molecular weight and microstructure, and selective chain functionalization are all possible, with distinctly different mechanisms operative for the electron-poor and electron-rich reagents. A variety of metal centers (early transition metals, lanthanides, late transition metals) and single-site ancillary ligand arrays (metallocene, half-metallocene, non-metallocene) are able to mediate these selective chain-termination/functionalization processes.