Multiple foundation species shape benthic habitat islands

Oecologia. 2008 Apr;155(4):785-95. doi: 10.1007/s00442-007-0945-2. Epub 2008 Jan 10.

Abstract

Pattern generation by foundation species (FS) is a primary structuring agent in marine and terrestrial communities. Prior research, focused on single-species or guild-dominated habitats, stressed the role of facilitation in maintaining community structure. However, many habitats are developed by multiple FS from different guilds. Competition between these FS may provide an additional agent potentially responsible for spatial and temporal patterns. In the White Sea, epibenthic patches formed by barnacles (Balanus crenatus) and solitary ascidians (mainly Styela spp. and Molgula spp.) on small stones and empty bivalve shells (mainly Serripes groenlandicus) produce microhabitats for different sessile taxa. We hypothesized that: (1) several FS would provide habitats for most of other species in the community; (2) different FS promote different assemblages of sessile organisms; (3) the interplay of facilitation and competition best explains observed patterns of abundance and demography in FS; and (4) these interactions shape the whole community, increasing the diversity compared to less heterogeneous patches constituted by single FS. We examined 459 patches and the results generally supported this hypothesis. The number of FS in a patch positively affected species diversity. Most sessile species (72% of individuals) resided on barnacles, ascidians and red algae, except barnacles that dominated the primary substrate. The size structure of barnacles (live individuals and empty shells) and ascidians were interrelated, suggesting long-term patch dynamics whereby ascidians regularly replace barnacles. Following this replacement, we expect consequent changes to the entire dependent assemblage. Evidence for these changes exists in the spatial pattern: most sessile and motile taxa demonstrated significant associations with either FS. Our results indicate that the small-scale patterns observed in patches formed by multiple FS are primarily generated by facilitation of dependent taxa by FS, and facilitation and competition between different FS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biodiversity
  • Ecosystem*
  • Eukaryota / physiology
  • Geography*
  • Invertebrates / physiology*
  • Oceans and Seas
  • Population Density