Computing multiscale curve and surface skeletons of genus 0 shapes using a global importance measure

IEEE Trans Vis Comput Graph. 2008 Mar-Apr;14(2):355-68. doi: 10.1109/TC.2007.70786.

Abstract

We present a practical algorithm for computing robust, multiscale curve and surface skeletons of 3D objects. Based on a model which follows an advection principle, we assign to each point on the skeleton a part of the object surface, called the collapse. The size of the collapse is used as a uniform importance measure for the curve and surface skeleton, so that both can be simplified by imposing a single threshold on this intuitive measure. The simplified skeletons are connected by default, without special precautions, due to the monotonicity of the importance measure. The skeletons possess additional desirable properties: They are centered, robust to noise, hierarchical, and provide a natural skeleton-to-boundary mapping. We present a voxel-based algorithm that is straightforward to implement and simple to use. We illustrate our method on several realistic 3D objects.