Thermal decomposition of monocalcium aluminate decahydrate (CaAl2O4.10H2O) investigated by in-situ synchrotron X-ray powder diffraction, thermal analysis and 27Al, 2H MAS NMR spectroscopy

Dalton Trans. 2008 Jan 28:(4):455-62. doi: 10.1039/b712684k. Epub 2007 Nov 1.

Abstract

The stability of monocalcium aluminate decahydrate, with the nominal composition CaAl(2)O(4).10H(2)O (CAH(10)), has a decisive role for the strength development and durability of cementitious materials based on high alumina cements. This has prompted an investigation of the thermal transformation of crystalline monocalcium aluminate decahydrate in air to an amorphous phase by in-situ synchrotron X-ray powder diffraction in the temperature range from 25 to 500 degrees C, by DTA/TGA, and (2)H, (27)Al MAS NMR spectroscopy. The decomposition includes the loss of hydrogen-bonded water molecules in the temperature range up to 175 degrees C, coupled with a reduction of the unit cell volume from 1928 A(3) at 25 degrees C, to 1674 A(3) at 185 degrees C. Furthermore, X-ray diffraction shows that CaAl(2)O(4).10H(2)O starts to transform to an amorphous phase at approximately 65 degrees C. This phase is fully developed at approximately 175 degrees C and it converts to crystalline CaAl(2)O(4) when heated to 1300 degrees C. The thermal decomposition in the temperature range from approximately 65 to approximately 175 degrees C involves both formation of an amorphous phase including AlO(4) tetrahedra and structural changes in the remaining crystalline phase.