Growth process and molecular packing of a self-assembled lipid nanotube: phase-contrast transmission electron microscopy and XRD analyses

Langmuir. 2008 Feb 5;24(3):709-13. doi: 10.1021/la702488u. Epub 2008 Jan 8.

Abstract

Phase-contrast transmission electron microscopy (PC-TEM) and quick freezing method have been combined to study the initial growing process of a self-assembled lipid nanotube in water. The PC-TEM enabled us to detect thin lamellar edge structure and the very fast growth of the newborn edge to a thin tube with high contrast. The thin tube acts as a core structure for further growth into thick complete lipid nanotube. The initially formed nanotube structure is denoted as a "core tube". The core tube has uniform wall structure that consists of five lamellar layers and the inner and outer diameters of the core tube are 130 and 180 nm, respectively. The evaluated lamellar spacing of 4.6 nm is well compatible with that measured by X-ray diffraction. We also discussed the molecular packing of the nanotube from the pitch angle determined by the PC-TEM images, X-ray diffraction pattern in wide-angle region, and IR spectroscopy. The subcell structure of the nanotube is assigned to an orthorhombic type. The twisting angle between the neighboring lipid molecules is determined as ca. 0.26 degrees for the first time; it is a crucial parameter for the formation of a lipid nanotube in chiral packing but has not been elucidated before.