Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats

Am J Physiol Gastrointest Liver Physiol. 2008 Mar;294(3):G619-26. doi: 10.1152/ajpgi.00428.2007. Epub 2008 Jan 3.

Abstract

Exercise training is commonly prescribed for treatment of nonalcoholic fatty liver disease (NAFLD). We sought to determine whether exercise training prevents the development of NAFLD in Otsuka Long-Evans Tokushima Fatty (OLETF) rats and to elucidate the molecular mechanisms underlying the effects of exercise on hepatic steatosis. Four-week-old OLETF rats were randomly assigned to either a sedentary control group (Sed) or a group given access to voluntary running wheels for 16 wk (Ex). Wheels were locked 2 days before euthanasia in the Ex animals, and both groups were euthanized at 20 wk old. Voluntary wheel running attenuated weight gain and reduced serum glucose, insulin, free fatty acids, and triglycerides in Ex animals compared with Sed (P < 0.001). Ex animals exhibited significantly reduced hepatic triglyceride levels and displayed fewer lipid droplets (Oil Red O staining) and reduced lipid droplet size compared with Sed. Wheel running increased by threefold the percent of palmitate oxidized completely to CO(2) in the Ex animals but did not alter AMP-activated protein kinase-alpha (AMPKalpha) or AMPK phosphorylation status. However, fatty acid synthase and acetyl-coenzyme A carboxylase (ACC) content were significantly reduced (approximately 70 and approximately 35%, respectively), and ACC phosphorylation and cytochrome c content were significantly elevated (approximately 35 and approximately 30%, respectively) in the Ex animals. These results unequivocally demonstrate that daily physical activity attenuates hepatic steatosis and NAFLD in an obese rodent model and suggest that this effect is likely mediated, in part, through enhancement of hepatic fatty acid oxidation and reductions in key protein intermediates of fatty acid synthesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Hydroxyacyl CoA Dehydrogenases / metabolism
  • Acetyl-CoA Carboxylase / metabolism
  • Adipose Tissue / metabolism
  • Animals
  • Azo Compounds
  • Blotting, Western
  • Citrate (si)-Synthase / metabolism
  • Coloring Agents
  • Fatty Acid Synthases / metabolism
  • Fatty Acids / biosynthesis
  • Fatty Acids / metabolism*
  • Fatty Liver / metabolism
  • Fatty Liver / pathology
  • Fatty Liver / prevention & control*
  • Glycogen / metabolism
  • Liver / metabolism*
  • Liver / pathology
  • Oxidation-Reduction
  • Physical Conditioning, Animal / physiology*
  • Rats
  • Rats, Inbred OLETF

Substances

  • Azo Compounds
  • Coloring Agents
  • Fatty Acids
  • Glycogen
  • 3-Hydroxyacyl CoA Dehydrogenases
  • Fatty Acid Synthases
  • Citrate (si)-Synthase
  • Acetyl-CoA Carboxylase
  • oil red O