Influence of doped anions on poly(3,4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitized solar cells

J Am Chem Soc. 2008 Jan 30;130(4):1258-63. doi: 10.1021/ja075704o. Epub 2008 Jan 3.

Abstract

Poly(3,4-ethylenedioxythiophene) (PEDOT) is an excellent hole-conducting polymer able to replace the liquid I(-)/I3(-) redox electrolyte in dye-sensitized solar cells (DSCs). In this work we applied the in situ photoelectropolymerization technique to synthesize PEDOT and carried out a careful analysis of the effect of different doping anions on overall solar cell performance. The anions analyzed in this work are ClO4(-), CF3SO3(-), BF4(-), and TFSI(-). The best solar cell performance was observed when the TFSI(-) anion was used. Photoelectrochemical and impedance studies reveal that the doped anions in the PEDOT hole conductor system have great influences on I-V curves, conductivity, and impedance. The optimization of these parameters allowed us to obtain an iodine-free solid-state DSC with a maximum J(sc) of 5.3 mA/cm2, V(oc) of 750 mV, and a conversion efficiency of 2.85% which is the highest efficiency obtained so far for an iodine-free solid-state DSC using PEDOT as hole-transport material.