Possible mechanisms of oxygen sensing in the pulmonary circulation

Physiol Res. 1991;40(5):463-70.

Abstract

Oxygen tension is known to control the pulmonary vascular tone. We reviewed three hypotheses that try to explain the mechanism whereby hypoxia is sensed in the lung tissue. The first hypothesis concerns the role of the oxygen binding hemoprotein cytochrome P-450. Studies using various inhibitors and activators of cytochrome P-450 show that this enzyme affects pulmonary vascular tone. The data are, however, contradictory. The second hypothesis postulates that hypoxia reduces the synthesis of vasodilator oxygen radicals in the lung. This hypothesis is quite well supported by experimental data. The third hypothesis, similarly widely documented, states that slowing of the respiratory chain and altered cellular energetics is crucial for sensing of hypoxia. In this case, however, it is not exactly clear how changes in cellular energetics are connected with vascular tone. The possibility exists that changes in both the cytochrome P-450 activity and in the rate of electrons flow in the respiratory chain may alter the amount of oxygen radicals in the cells and, similarly as in the "oxygen radicals" hypothesis, govern calcium channels through the control of the redox status of these channels.

Publication types

  • Review

MeSH terms

  • Oxidation-Reduction
  • Oxygen / metabolism*
  • Pulmonary Circulation / physiology*

Substances

  • Oxygen