The initial stages of oogenesis and their relation to differential fertility in the honey bee (Apis mellifera) castes

Arthropod Struct Dev. 2004 Oct;33(4):431-42. doi: 10.1016/j.asd.2004.06.006. Epub 2004 Sep 25.

Abstract

Neither the overall differences in ovariole number nor the caste-specifically modulated expression of vitellogenin can fully explain the striking caste differences in honey bee reproduction, in particular the mechanisms that block oogenesis in virgin queens and in workers kept in the presence of a queen. For this reason we investigated the initial stages of oogenesis in queens in relation to mating status and in workers exposed to different social conditions. A striking feature in ovarioles of both castes was a considerably elongated terminal filament which consisted not only of normal terminal filament cells but also contained apparently undifferentiated cells that were tentatively considered as stem cells. BrdU incorporation was detected in the upper germarium, as well as in the terminal filament. Cytoskeleton analysis by TRITC-phalloidin labeling for F-actin, and immunofluorescence detection for beta-tubulin did not reveal structural differences in the early oogenesis steps between queens and queenless workers. In contrast, queenright workers showed signs of a disorganized microtubule and microfilament system that could explain the histological evidence for progressive cell death observed in the germaria. In addition to cytoplasmic tubulin we also detected marked intranuclear foci indicating the presence of nuclear beta(II)-tubulin.