Hoogsteen vs. Watson-Crick base pairing: incorporation of 2-substituted adenine- and 7-deazaadenine 2'-deoxy-beta-D-ribonucleosides into oligonucleotides

Chem Biodivers. 2007 Dec;4(12):2725-44. doi: 10.1002/cbdv.200790222.

Abstract

Various 2-substituted 2'-deoxyadenosines and 7-deazaadenosines have been synthesized. The phosphonate building block 9 of 2-chloro-7-deaza-2'-deoxyadenosine (7-deazacladribine; 2) was prepared by 4,4'-dimethoxytritylation of the parent nucleoside (-->7), followed by protection of the amino function with a formamidine residue (-->8). The latter was reacted with PCl3/N-methylmorpholine/1,2,4-triazole to give compound 9. Moreover, 2-methoxy-2'-deoxyadenosine (2'-deoxyspongosine; 1b) was converted into the fully protected derivative 12, which was then transformed into the 2-cyanoethyl phosphoramidite 14. Also the 2-(trifluoromethyl)-substituted 2'-deoxyadenosines 19-21 were prepared by glycosylation of the chromophore 16 with the halogenose 17, followed by one-pot deprotection and nucleophilic displacement of the 6-Cl substituent. The new DNA building blocks 9 and 14 were used--together with formerly prepared cladribine derivative 4--for solid-phase synthesis of a series of oligodeoxyribonucleotides. These were studied with respect to their thermal stability as well as of the base pairing mode (Watson-Crick vs. Hoogsteen) of modified bases.

MeSH terms

  • Adenine / chemistry*
  • Aza Compounds / chemistry*
  • Base Pairing*
  • Magnetic Resonance Spectroscopy
  • Molecular Structure
  • Nucleic Acid Denaturation
  • Oligonucleotides / chemistry*
  • Ribonucleosides / chemistry*
  • Thermodynamics

Substances

  • Aza Compounds
  • Oligonucleotides
  • Ribonucleosides
  • Adenine