Isomeric recognition by ion/molecule reactions: the ionized phenol-cyclohexadienone case

J Am Soc Mass Spectrom. 2008 Jan;19(1):126-37. doi: 10.1016/j.jasms.2007.10.023. Epub 2007 Nov 7.

Abstract

The isomerization process between ionized phenol and ionized cyclohexadienone is studied by performing ion/molecule reactions with several alkyl nitrites in a hexapole collision cell inserted in a six-sector mass spectrometer. The distinction between both isomeric species is readily achieved on the basis of the completely different reactivity patterns observed for them in subsequent reactions. When reacting with alkyl nitrite, ionized phenol undergoes two competitive reactions corresponding to the formal radical substitution of the hydroxylic hydrogen atom by respectively (i) the nitrosyl radical (m/z 123) and (ii) an alkoxyl radical (m/z 138 if alkyl=ethyl). Both reactions were theoretically demonstrated by density functional theory calculations [B3LYP/6-311++G(d,p)+ZPE] to involve hydrogen-bridged radical cations as key intermediates. The ion/molecule reaction products detected starting from ionized cyclohexadienone as the mass-selected ions arise from *OAlkyl, *OH, and NO2* radical additions. The occurrence of a spontaneous ring-opening of cyclohexadienone radical ion into a distonic species is suggested to account for the observed ion/molecule reaction products. We also demonstrated that ionized cyclohexadienone is partly isomerized during a proton-transfer catalysis process into ionized phenol inside the Hcell with ethyl nitrite as the base. The molecular ions of phenol generated in such conditions consecutively undergo reactions producing m/z 123 and 138 radical cations. The proposed mechanism is supported by results of quantum chemical calculations.