mTORC1 signaling can regulate growth factor activation of p44/42 mitogen-activated protein kinases through protein phosphatase 2A

J Biol Chem. 2008 Feb 1;283(5):2575-85. doi: 10.1074/jbc.M706173200. Epub 2007 Dec 4.

Abstract

The mTORC1 complex (mammalian target of rapamycin (mTOR)-raptor) is modulated by mitogen-activated protein (p44/42 MAP) kinases (p44/42) through phosphorylation and inactivation of the tuberous sclerosis complex. However, a role for mTORC1 signaling in modulating activation of p44/42 has not been reported. We show that in two cancer cell lines regulation of the p44/42 MAPKs is mTORC1-dependent. In Rh1 cells rapamycin inhibited insulin-like growth factor-I (IGF-I)-stimulated phosphorylation of Thr(202) but not Tyr(204) and suppressed activation of p44/42 kinase activity. Down-regulation of raptor, which inhibits mTORC1 signaling, had a similar effect to rapamycin in blocking IGF-I-stimulated Tyr(204) phosphorylation. Rapamycin did not block maximal phosphorylation of Tyr(204) but retarded the rate of dephosphorylation of Tyr(204) following IGF-I stimulation. IGF-I stimulation of MEK1 phosphorylation (Ser(217/221)) was not inhibited by rapamycin. Higher concentrations of rapamycin (> or =100 ng/ml) were required to inhibit epidermal growth factor (EGF)-induced phosphorylation of p44/42 (Thr(202)). Rapamycin-induced inhibition of p44/42 (Thr(202)) phosphorylation by IGF-I was reversed by low concentrations of okadaic acid, suggesting involvement of protein phosphatase 2A (PP2A). Both IGF-I and EGF caused dissociation of PP2A catalytic subunit (PP2Ac) from p42. Whereas low concentrations of rapamycin (1 ng/ml) inhibited dissociation of PP2Ac after IGF-I stimulation, it required higher concentrations (> or =100 ng/ml) to block EGF-induced dissociation, consistent with the ability for rapamycin to attenuate growth factor-induced activation of p44/42. The effect of rapamycin on IGF-I or insulin activation of p44/42 was recapitulated by amino acid deprivation. Rapamycin effects altering the kinetics of p44/42 phosphorylation were completely abrogated in Rh1mTORrr cells that express a rapamycin-resistant mTOR, whereas the effects of amino acid deprivation were similar in Rh1 and Rh1mTORrr cells. These results indicate complex regulation of p44/42 by phosphatases downstream of mTORC1. This suggests a model in which mTORC1 modulates the phosphorylation of Thr(202) on p44/42 MAPKs through direct or indirect regulation of PP2Ac.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • Cell Line, Tumor
  • DNA / genetics
  • Epidermal Growth Factor / pharmacology
  • Humans
  • Insulin / pharmacology
  • Insulin-Like Growth Factor I / pharmacology*
  • Kinetics
  • MAP Kinase Signaling System / drug effects
  • Mechanistic Target of Rapamycin Complex 1
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3 / metabolism*
  • Models, Biological
  • Molecular Sequence Data
  • Multiprotein Complexes
  • Okadaic Acid / pharmacology
  • Phosphorylation
  • Protein Phosphatase 2 / metabolism*
  • Proteins
  • Signal Transduction / drug effects
  • Sirolimus / pharmacology
  • TOR Serine-Threonine Kinases
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*

Substances

  • Insulin
  • Multiprotein Complexes
  • Proteins
  • Transcription Factors
  • Okadaic Acid
  • Epidermal Growth Factor
  • Insulin-Like Growth Factor I
  • DNA
  • Mechanistic Target of Rapamycin Complex 1
  • TOR Serine-Threonine Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Protein Phosphatase 2
  • Sirolimus