Separation of 7-xylosyl-10-deacetyl paclitaxel and 10-deacetylbaccatin III from the remainder extracts free of paclitaxel using macroporous resins

J Chromatogr A. 2008 Jan 4;1177(1):77-86. doi: 10.1016/j.chroma.2007.11.020. Epub 2007 Nov 17.

Abstract

The separation and enrichment of 10-deacetylbaccatin III (10-DAB III) and 7-xylosyl-10-deacetyl paclitaxel were studied on seven macroporous resins with special structures. The performance of 7-xylosyl-10-deacetyl paclitaxel and 10-DAB III on macroporous resins including AB-8, ADS-17, ADS-21, ADS-31, ADS-8, H1020 and NKA-II was compared according to their adsorption and desorption properties. AB-8 provided a much higher adsorption capacity for 7-xylosyl-10-deacetyl paclitaxel and 10-DAB III than other resins, and its adsorption data fitted well to the Langmuir and Freundlich isotherm. According to the adsorption and desorption capacities and the adsorption isotherms, AB-8 demonstrated a remarkable capability for the preparative separation of 7-xylosyl-10-deacetyl paclitaxel and 10-DAB III from the remainder extracts free of paclitaxel. In order to optimize parameters of separation, dynamic adsorption and desorption experiments were carried out on the columns packed with AB-8 resin. The optimal conditions were: the processing volume 15 BV; concentrations of 7-xylosyl-10-deacetyl paclitaxel and 10-DAB III in feed solution 0.0657 mg/mL and 0.1494 mg/mL; flow rate 1 mL/min; temperature 35 degrees C. The gradient elution program was as follows: 30% ethanol for 3 BV, then 80% of ethanol for 6 BV, flow rate 1 mL/min. After the AB-8 resin treatment, the contents of 7-xylosyl-10-deacetyl paclitaxel and 10-DAB III in the product had increased from 0.053% and 0.2% to 3.34% and 1.69%, which were 62.43-fold and 8.54-fold of those in the untreated extracts, respectively, and the recoveries of 7-xylosyl-10-deacetyl paclitaxel and 10-DAB III were 85.85% and 52.78%. The performance achieved good separation and higher recovery of 7-xylosyl-10-deacetyl paclitaxel and 10-DAB III from remainder extracts free of paclitaxel by using AB-8 resin. It is a fast and effective method for the separation and enrichment of 7-xylosyl-10-deacetyl paclitaxel and 10-DAB III.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Chromatography, High Pressure Liquid
  • Kinetics
  • Plant Extracts / chemistry*
  • Reference Standards
  • Spectrophotometry, Ultraviolet
  • Taxoids / isolation & purification*
  • Thermodynamics

Substances

  • 7-xylosyl-10-deacetyltaxol
  • Plant Extracts
  • Taxoids
  • 10-deacetylbaccatine III