Probing the flexibility of the bacterial reaction center: the wild-type protein is more rigid than two site-specific mutants

Biochemistry. 2007 Dec 25;46(51):14960-8. doi: 10.1021/bi7004416. Epub 2007 Dec 4.

Abstract

Experimental and theoretical studies have stressed the importance of flexibility for protein function. However, more local studies of protein dynamics, using temperature factors from crystallographic data or elastic models of protein mechanics, suggest that active sites are among the most rigid parts of proteins. We have used quasielastic neutron scattering to study the native reaction center protein from the purple bacterium Rhodobacter sphaeroides, over a temperature range of 4-260 K, in parallel with two nonfunctional mutants both carrying the mutations L212Glu/L213Asp --> Ala/Ala (one mutant carrying, in addition, the M249Ala --> Tyr mutation). The so-called dynamical transition temperature, Td, remains the same for the three proteins around 230 K. Below Td the mean square displacement, u2, and the dynamical structure factor, S(Q,omega), as measured respectively by backscattering and time-of-flight techniques are identical. However, we report that above Td, where anharmonicity and diffusive motions take place, the native protein is more rigid than the two nonfunctional mutants. The higher flexibility of both mutant proteins is demonstrated by either their higher u2 values or the notable quasielastic broadening of S(Q,omega) that reveals the diffusive nature of the motions involved. Remarkably, we demonstrate here that in proteins, point genetic mutations may notably affect the overall protein dynamics, and this effect can be quantified by neutron scattering. Our results suggest a new direction of investigation for further understanding of the relationship between fast dynamics and activity in proteins. Brownian dynamics simulations we have carried out are consistent with the neutron experiments, suggesting that a rigid core within the native protein is specifically softened by distant point mutations. L212Glu, which is systematically conserved in all photosynthetic bacteria, seems to be one of the key residues that exerts a distant control over the rigidity of the core of the protein.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Models, Molecular
  • Mutant Proteins / chemistry*
  • Mutant Proteins / genetics
  • Mutant Proteins / metabolism*
  • Mutation / genetics
  • Photosynthetic Reaction Center Complex Proteins / chemistry*
  • Photosynthetic Reaction Center Complex Proteins / genetics
  • Photosynthetic Reaction Center Complex Proteins / metabolism*
  • Protein Structure, Quaternary
  • Protein Structure, Tertiary
  • Rhodobacter sphaeroides / enzymology*
  • Rhodobacter sphaeroides / genetics
  • Sensitivity and Specificity
  • Temperature

Substances

  • Bacterial Proteins
  • Mutant Proteins
  • Photosynthetic Reaction Center Complex Proteins