Attractiveness of MM-X traps baited with human or synthetic odor to mosquitoes (Diptera: Culicidae) in The Gambia

J Med Entomol. 2007 Nov;44(6):970-83. doi: 10.1603/0022-2585(2007)44[970:aomtbw]2.0.co;2.

Abstract

Chemical cues play an important role in the host-seeking behavior of blood-feeding mosquitoes (Diptera: Culicidae). A field study was carried out in The Gambia to investigate the effects of human odor or synthetic odor blends on the attraction of mosquitoes. MM-X traps baited with 16 odor blends to which carbon dioxide (CO2) was added were tested in four sets of experiments. In a second series of experiments, MM-X traps with 14 odor blends without CO2 were tested. A blend of ammonia and L-lactic acid with or without CO2 was used as control odor in series 1 and 2, respectively. Centers for Disease Control and Prevention (CDC) traps were placed in a traditional house and an experimental house to monitor mosquito densities during the experiments. The MM-X traps caught a total number of 196,756 mosquitoes, with the most abundant species belonging to the genera Mansonia (70.6%), Anopheles (17.5%), and Culex (11.5%). The most abundant mosquito species caught by the CDC traps (56,290 in total) belonged to the genera Mansonia (59.4%), Anopheles (16.0% An. gambiae s.l. Giles, and 11.3% An. ziemanni Grünberg), and Culex (11.6%). MM-X traps baited with synthetic blends were in many cases more attractive than MM-X traps baited with human odors. Addition of CO2 to synthetic odors substantially increased the catch of all mosquito species in the MM-X traps. A blend of ammonia + L-lactic acid + CO, + 3-methylbutanoic acid was the most attractive odor for most mosquito species. The candidate odor blend shows the potential to enhance trap collections so that traps will provide better surveillance and possible control.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carbon Dioxide
  • Culicidae / physiology*
  • Gambia
  • Humans
  • Mosquito Control / instrumentation*
  • Odorants

Substances

  • Carbon Dioxide