Implications of rewiring bacterial quorum sensing

Appl Environ Microbiol. 2008 Jan;74(2):437-45. doi: 10.1128/AEM.01688-07. Epub 2007 Nov 26.

Abstract

Bacteria employ quorum sensing, a form of cell-cell communication, to sense changes in population density and regulate gene expression accordingly. This work investigated the rewiring of one quorum-sensing module, the lux circuit from the marine bacterium Vibrio fischeri. Steady-state experiments demonstrate that rewiring the network architecture of this module can yield graded, threshold, and bistable gene expression as predicted by a mathematical model. The experiments also show that the native lux operon is most consistent with a threshold, as opposed to a bistable, response. Each of the rewired networks yielded functional population sensors at biologically relevant conditions, suggesting that this operon is particularly robust. These findings (i) permit prediction of the behaviors of quorum-sensing operons in bacterial pathogens and (ii) facilitate forward engineering of synthetic gene circuits.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aliivibrio fischeri / genetics
  • Bacteria / genetics*
  • Gene Expression Regulation, Bacterial
  • Models, Genetic
  • Operon / genetics
  • Quorum Sensing / genetics*