Nanowires and nanoribbons formed by methylphosphonic acid

J Nanosci Nanotechnol. 2007 Sep;7(9):3071-80. doi: 10.1166/jnn.2007.683.

Abstract

The production and physical properties of nanowires and nanoribbons formed by methylphosphonic acid (MPA)--CH3PO(OH)2--were investigated. These structures are formed on an aluminum coated substrate when immersed in an ethanolic solution of MPA for several days. A careful investigation of the growth conditions resulted in a narrow window of solution concentrations and temperatures for the successful development of nanowires and nanoribbons. Several different techniques were employed to characterize these nanostructures: (1) Photoluminescence experiments showed a strong emission at 2.3 eV (green), which is visible to the naked eye; (2) X-ray diffraction experiments indicated a significant cristalinity, in agreement with atomic force microscopy (AFM) and transmission electron microscopy (TEM) morphology images, which show organized nano-scale wires and ribbons, (furthermore, AFM-Phase and TEM images also suggest that nanoribbons are formed by well-aligned nanowires); (3) Conductive-AFM experiments revealed an intermediary conductivity for these structures (10(-1)/Ohm x m), which is similar to some intrinsic semiconductors and; (4) finally, Infrared, Raman, and X-Ray Photoelectron Spectroscopies produced information about the contents, structure, and composition of both wires and ribbons.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorption
  • Aluminum / chemistry
  • Light
  • Microscopy, Atomic Force
  • Microscopy, Electron, Transmission
  • Nanoparticles / chemistry*
  • Nanotechnology / methods
  • Nanotubes, Carbon / chemistry*
  • Nanowires / chemistry*
  • Organophosphorus Compounds / chemistry*
  • Spectrophotometry, Infrared / methods
  • Spectrum Analysis, Raman / methods
  • Temperature
  • X-Ray Diffraction

Substances

  • Nanotubes, Carbon
  • Organophosphorus Compounds
  • methylphosphonic acid
  • Aluminum