Extreme statistics for time series: distribution of the maximum relative to the initial value

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041119. doi: 10.1103/PhysRevE.76.041119. Epub 2007 Oct 12.

Abstract

The extreme statistics of time signals is studied when the maximum is measured from the initial value. In the case of independent, identically distributed (iid) variables, we classify the limiting distribution of the maximum according to the properties of the parent distribution from which the variables are drawn. Then we turn to correlated periodic Gaussian signals with a 1/falpha power spectrum and study the distribution of the maximum relative height with respect to the initial height (MRHI). The exact MRHI distribution is derived for alpha=0 (iid variables), alpha=2 (random walk), alpha=4 (random acceleration), and alpha=infinity (single sinusoidal mode). For other, intermediate values of alpha , the distribution is determined from simulations. We find that the MRHI distribution is markedly different from the previously studied distribution of the maximum height relative to the average height for all alpha. The two main distinguishing features of the MRHI distribution are the much larger weight for small relative heights and the divergence at zero height for alpha>3. We also demonstrate that the boundary conditions affect the shape of the distribution by presenting exact results for some nonperiodic boundary conditions. Finally, we show that, for signals arising from time-translationally invariant distributions, the density of near extreme states is the same as the MRHI distribution. This is used in developing a scaling theory for the threshold singularities of the two distributions.