Stable deep nulling in polychromatic unpolarized light with multiaxial beam combination

Appl Opt. 2007 Nov 10;46(32):7817-22. doi: 10.1364/ao.46.007817.

Abstract

In the context of the space-based nulling mission ESA-Darwin, Thales Alenia Space has developed a nulling breadboard for the European Space Agency (ESA): the multiaperture imaging interferometer (MAII) to demonstrate deep and stable nulling and to investigate various subsystems of the ESA-Darwin interferometer. Recently, we have extended our investigations to the multiaxial beam combination. This combination scheme presents many advantages: simplicity, compactness, and a high coupling efficiency for a three-beam combination. The near-infrared (lambda approximately 1.55 microm) MAII breadboard has been upgraded to the multiaxial beam combination. Polarization and stability issues have been thoroughly investigated. We report on the recent results we have obtained with the multiaxial configuration of MAII in unpolarized light with a relative spectral bandwidth of 5%: nulling ratios of mean value N=1.7 x 10(-5), stable over 1 h with a standard deviation sigma( N )=5.7 x 10(-7). These results indicate that the multiaxial beam combination has the potential to meet Darwin requirements.